DarwinBots

A complete tutorial for Version 2.13

A basic overview

What is a DarwinBot?

A DarwinBot is a computer simulation of a simple life form. It is not intended to be an exact replica of any known living organism, nor is ever likely to be one. Think of it as a simple, but not necessarily single celled, creature with the ability to interact with it’s surroundings in a number of ways.

A DarwinBot lives in a 2-dimensional universe and feeds by extracting energy from other DarwinBots. DarwinBots of various design form the entire food chain.

DarwinBots operate on a series of DNA like conditional instructions which I will refer to as Genes. These genes control every facet of the DarwinBot’s life, from the way he looks for food to the way he defends himself or reproduces. As with any life form, these genes are able to mutate slightly each time a new generation is born. Sometimes the mutation will enable the young DarwinBot to perform a certain task in a more efficient way, in which case he is more likely to pass on his genes than was his predecessor. Sometimes the mutation will make him less efficient. Sometimes the mutation will even make him completely sterile.

For the purpose of this tutorial I will largely ignore mutations and focus on programming strategies instead.

What commands can a DarwinBot use in his DNA?

In Appendix 1 you can find a list of all the possible memory locations that are reserved for DNA commands and functions, and the names of the commands or functions found at each location. This information can also be found in the “sysvars.txt” file in the DarwinBots directory where your game is stored. Each one of these will be discussed in detail later.

What is a Command?

A command is a memory location into which a value is stored in order to make the robot perform a certain operation. They are addressed via labels.

What is a label?

A label is a name preceded by a period. Each command and function can be addressed either by a label or by using their numerical address. Examples of labels are .refeye or .up.

What is a function

A Function is a memory location into which the program automatically saves a value. Functions are used by the DarwinBot’s DNA to read data about himself and his surroundings. Many (but not all) functions are cleared at the start of each cycle. Others may be renewed only when a certain event occurs.

How does the DarwinBot process the information in his DNA.

The DNA of each robot is processed sequentially using a system of conditions and actions along with a “stack” of data. This is somewhat similar to assembly language but is much easier to understand.

The DarwinBot DNA uses a version of the more common IF/THEN statements found in all versions of BASIC, to decide on which actions to take based on input from certain of his memory locations (Functions).

In normal BASIC the format will be….

IF “condition” = true (or false)

THEN “perform action”

In the DarwinBot’s DNA this would be written…

Cond

“condition” = true (or false)

start

“perform action”

stop

In addition to this slight difference in layout, the DarwinBot’s DNA uses Reverse Polish Notation. Also variables cannot be used as they would be in BASIC. This means that instead of writing a condition as follows…

IF Apples = 10 THEN

 “perform action”

END IF

We would have to write something like…

Cond

*.eye5 10 =

start

“perform action”

stop

As you can see, we cannot use a variable such as “apples”. Instead we must use a memory location within the robot’s structure.

.eye5 represents the value stored in just such a memory location. The “” is a symbol used to indicate that we are reading a value stored in a location pointed to by the label .eye5. The “.” Means that the label immediately after it represents a numerical value. .eye5 is equal to 505.

*.eye5 could also be written as *505 (the value stored in location 505)

You will also notice that the syntax of the condition is reversed from the previous example. The “=” sign is placed after the two values that we wish to compare. This is because of the “stack” nature of the DarwinBot’s memory.

*.eye5

places the value stored in memory location 505, onto the top of the stack.

10

places the value 10 onto the top of the stack. It goes in above the previous value, providing there is enough remaining space in the stack for it to do so.

=

This “operand” takes the top two values out of the stack then compares them. If the two values are equal then the condition has been met and the program continues on to the “action” step of the gene. If they are not equal then the program will skip the rest of the gene.

Several other “operands” can be used in the DNA also. The following is a list of all of them and a brief description of their functions.

=
The 2 values are equal.

!=
The 2 values are not equal.

>
The first value is greater than the second value.

<
The first value is less than the second value.

%=
The two values are almost equal (within 10%)

How do I create a robot?

In order to make a good robot, you need to give him three things.

1. The ability to find food.

2. The ability to eat the food.

3. The ability to reproduce.

Here is an example of a very simple combat robot. Rather than copy/pasting this into a txt file, it is better to type it in. then save the file as “simplebot.txt” in the robots folder of the DarwinBots directory. Each stage of the development is also included as a txt file in the zip file.

Alternatively each stage of the development of Simplebot can just be loaded into the game from the Simplebot files included with this tutorial.

Run the DarwinBots program using the default settings. Ensure that vegs are not Blocked at this time. Don’t bother to add any other robots just yet.

Choose your favorite color, select 5 robots and give them 3000 energy. Finally disable all mutations before starting the simulation. We don’t want him evolving yet.

During this tutorial I will take you through all the stages of development of a combat oriented robot. Many of the things we try will inevitably be dead ends and will make our robot worse than at previous stages. These failed strategies can teach us a lot about the war DarwinBots works and hopefully make us all better programmers.

‘Simplebot 1

‘Gene 1. Simple search pattern part 1

cond

 *.eye3 *.eye5 >

start

 -25 .aimdx store

stop

‘Gene 2. Simple search pattern part 2

cond

 *.eye7 *.eye5 >

start

 25 .aimdx store

stop

‘Gene 3. Move forward

cond

start

 5 .up store

stop

‘Gene4. Shoot the food

cond

 *.eye5 40 >

start

 -1 .shoot store

stop

‘Gene 5. Reproduce

cond

 *.nrg 5000 >

start

 50 .repro store

stop

end

Available as Simplebot1.txt
If you try this little robot out you will discover very quickly that it really isn’t very good. It finds food reasonably well providing it is fairly near to the center of it’s field of vision. It even feeds and reproduces OK so what is it that makes this little guy so totally useless?

His main problem is that he can’t tell the difference between food and friends so he eats everything he sees, including his children / parents.

We can easily fix this little problem by adding a new gene to make him avoid his own family. Try adding this gene to the robot. Doesn’t matter where you put it as long as it is after the two search pattern genes. That is because this gene also uses .aimdx to rotate the robot. Whichever gene we want to take priority must always come last. As avoiding conspecifics is more important than finding food (including conspecifics) we have to put it later in the genome.

For now, just type in the gene right at the end. (make sure you put it before the “end” statement though.) When you have typed it in and saved the file, restart the simulation and see how Simplebot has changed.

‘Gene 6. Avoid conspecifics

cond

 *.refeye 5 =

start

 180 .aimdx store
stop

Available as Simplebot2.txt

See how much more efficient he is now? We have turned a pretty useless little robot into a pretty good one. He already beats the heck out of some of the more basic robots such as C-Ancestralis and even gives good old Preservans a good run. With a few minor alterations, we could probably make him really good. Let the program run for a couple of thousand cycles and see what the population reaches. He should max out at around 120 or so.

The only problem is that he won’t stop spinning around all the time. Why is that? And why does he only stop spinning when there is food nearby?

The reason he spins is that *.refeye does NOT get refreshed in each cycle of the program. This means that once our robot sets eyes on one of his own family, he just keeps on seeing the same thing every cycle until something different crosses his field of view. This can be a real pain sometimes but with a bit of careful thought and some clever programming you can make very good use of this seemingly nasty bug in the program. Check out the top robots such as Devincio Eversor and Vex Pefidiosus and you will find this “feature” exploited mercilessly to create a world beater.

Do we really want our little Simplebot to keep spinning around or don’t we? I propose that we explore both possibilities to see which one works out best.

The NON-Spinning approach.

OK then. How do we stop Simplebot from spinning?

We need to make sure that the new gene that makes him spin is only activated under certain circumstances and not all the time.

We put the gene in to make him turn away from his family members so I guess we need to make sure he only turns when he is actually looking at one of them and not at a permanent afterimage.

Try adding the following line to the condition section of gene 6.

*.eye5 0 >

You will also need to change the value of the other line in this gene from.

 *.refeye 5 = to *.refeye 6 =

Available as Simplebot3.txt

This is because we have added another eye cell to the genome.

Save the file and restart the simulation again. Let it run for a couple of thousand cycles to see what the robot population reaches. It should max out at around 115 if the veg reseed value is set to 10. That is a little worse but still pretty respectable.

Do you notice how some of the robots are going !!POOF!! every now and then for apparently no reason whatsoever?

They are obviously running out of energy and dying.

Try pausing the program then double clicking one of them. Try to choose one that is right out in the middle of nowhere. That way it won’t be trying to change direction. This will bring up an information box showing energy and a few other useful things about the robot.

Click the button marked “Open console” and a new box will open. Drag it away from the first box so that you can see the robot’s energy value. Remember this number.

Now click on the button with the circular arrow. This will run the entire program for one cycle. Do this a few times and note how much energy Simplebot is expending just to stay alive and search for food. He loses a little over six energy points every single cycle. We really need to improve that a lot.

Now, where do you think that Simplebot expends the most energy?

The food finding routines are pretty cheap. He only has a couple of conditions which cost 0.02 each and a single store command which costs 2. Anyway our robot can’t see anything at the moment so it isn’t rotating at all.

About the only thing he is doing is moving forward. Well he isn’t actually moving as such. What he is actually doing is accelerating in the direction in which he is facing.

Go to the bottom line in the “console” window and type in “? .vel” then press return.

If your robot is at full speed the console will output a value of 30.

Cycle it forward once more and look again. It’s still 30 isn’t it? How much did we just put into the .up location? 5 wasn’t it? Yet he is still going the same speed. That is because 30 is as high as you can go in DB.

Perhaps we need to add a condition to stop Simplebot from accelerating at all when he is already at a velocity of 30. We presently don’t have a condition at all in gene 3. He just moves at every cycle. Try adding the following to the condition part of gene 3.

*.vel 30 <

Available as simplebot4.txt

Now save the Simplebot file and restart the simulation. Open up the console as before and take a look at his energy expenditure now. He hardly uses any at all does he? About once every 4 or five cycles he boosts his speed by five points to keep his speed up but the rest of the time he just coasts along.

Even this isn’t really satisfactory though. He still spends five points on acceleration when he only really needs to use one. How can we fix that?

Why not let him run for a couple of thousand cycles to see how high the population gets while we think about possible improvements. He reaches about 145 robots on my system. That is quite an improvement over the previous number.

So how do we improve him still further?

Maybe there is some way we can use the value in .vel to calculate a suitable acceleration automatically. That would let Simplebot accelerate really hard when he needs to and cruise effortlessly once he reaches a good speed.

Try changing the action line in gene 3 from..

 5 .up store to 30 *.vel sub .up store
Available as simplebot5.txt

What does this line do?

Well first we need to remember the order in which these calculations are carried out in Reverse Polish Notation.

First we place 30 onto the top of the stack just by typing in the number 30. next we place the value stored in the memory location pointed at by the label .vel onto the stack. The * in front of the label means that we are using the value in the location rather than the number of the location.

So now the stack has 2 numbers in it. First there is 30 then there is whatever value *.vel represents.

The next thing we see in the code is the word sub. This tells the program to subtract the top number in the stack from the next number in the stack. In doing so both numbers are removed from the stack. The result of the subtraction is then placed on top of the stack again. So in effect we could have written something like a = 30 - *.vel if we had been using algebra.

Next we take the number on top of the stack and move it to the .up memory location by using the store command.

Try it out and see what happens.

Oh Dear! It seems that Simplebot’s overall efficiency has gone down a lot. He only reaches about 70-80 population now.

I wonder why that last idea didn’t work? It seemed like a really good idea.

Let’s go in and look at a close up of a robot again to see how much energy he is expending each cycle.

Well when he is out hunting it looks pretty good but look what happens when he reproduces. Both the parent and the offspring seem to engage in a tug of war until either one of them dies of exhaustion or the reproduction tie disappears after the gestation period. During this tugging phase they both expend around 30 points of energy each cycle. Work it out. Velocity is pretty close to zero so 30 – 0 = 30 doesn’t it. This is going to be tricky to fix.

OK then. We either have to cut short the gestation period or stop the robots from pulling on the tie. We can actually do either one but cutting short the gestation period is something to be addressed much later. For now let’s figure out a way to stop them pulling on the tie and wasting 30 energy points each cycle.

Any ideas?

No?

Well here is one possible way to address the problem. We just stop the acceleration while ties are present. Luckily we have an easy way to detect the presence of ties with the new .numties function. This function automatically places a value into the .numties memory position every cycle so all we have to do is read it.

Try adding this line to the condition part of gene 3, right underneath the *.vel 30 < line.

*.numties 0 =

Available as simplebot6.txt

This will prevent the activation of the gene as long as there are any ties attached to the robot.

Load up your new version and try it out.

AAH! That’s better. Now they don’t rip each other to pieces when they reproduce. They just drift along until the tie dissolves then they fly off to find food.

They still only get up to about 120 robots though so they aren’t any better than they used to be. Why is that?

The reason is that once there are enough simplebots floating around the screen then they tend to see each other quite often. Every time they do so, they change direction so their forward velocity is no longer 30. This means that they will accelerate at whatever rate it takes in order to get up to full speed again. This is quite a useful feature when dogfighting with another species of robot but is counterproductive when trying to get top movement and feeding efficiency.

There are a number of ways to substantially improve Simplebot6. These include improving his food finding genes, possibly by adding an extra 2 genes to look at wider angle eyes such as *.eye1 and *.eye9. Look at the chart in appendix 2 to see where the eyes are able to see and which course changes to apply to .aimdx or .aimsx.

You could also experiment with his acceleration genes by dividing the acceleration amount by 2 or 3 so he expends less energy.

Why don’t you try developing Simplebot6 a little for yourself before continuing with this tutorial.

The Spinning Approach

 Well. That will do for the straight swimmer approach. Now let’s take a look at the spinning approach. How do we make Simplebot spin again? Easy. Just take out the *.eye5 0 > line from gene 6 and change the .refeye value back to 5. This will reset his conspecifics sensing after removing the eye5 function.

Try this out yourself or just load up simplebot8.txt and let him run for a while.

He isn’t very good again is he? Why is that? He was better than this before when he was in spinning mode.

When you have finished tearing out handfuls of your own hair, have a really good look at the way he spins. There is something not quite right about it. Can you see what?

Yup! That’s it. He is constantly accelerating as he spins. He must be moving at less than 30 velocity. Duh! Course he is. He is spinning around on the spot isn’t he so how fast could he be going? We have to go in and change that acceleration gene again.

I know! Let’s add the same condition to the acceleration gene as the one that makes him spin… except in reverse. We only let him accelerate when the value in .refeye DOESN’T equal 5. Add this line to the condition step of gene 3. and run Simplebot again.

*.refeye 5 !=

Available as simplebot9.txt

That is much better isn’t it. He spins perfectly now and hardly expends any energy at all while he is doing it. He effectively goes into a kind of shut down state and waits for food to drift by then pounces on it when it does.

The little guy easily reaches 170 individuals in less than 2000 cycles. Just for fun let’s add one of the old top bots to the fray and see what happens.

I CHOOSE YOU “I_FLAMMA” Sorry. Been watching too much Pokemon.

Just load up I_Flamma. Give him a different color than Simplebot9 and 5 individuals at 3000 starting energy. Disable his mutation and start the simulation. Now let them fight it out for a while.

Our little Simplebots don’t do too badly but in the end, the flaming ones beat them all.

Don’t worry we will get our revenge a little later.

What do you think the reason is that Simplebot loses?

One thing I notice is that his food search pattern is too narrow so he isn’t aggressive enough in chasing down his food or his enemy.

Another thing is that trick that we added a while back to stop him pulling on his ties. That dormant period isn’t working out too well with competition on the field. First of all let’s go back and delete the *.numties 0 = line in gene 3. The next thing we will do is to reduce Simplebot’s acceleration a little bit. That will allow him to tug on his ties a little longer without depleting his energy reserves. Change the action line in gene 3 from 30 *.vel sub .up store to 30 *.vel sub 2 div .up store. This will divide his acceleration in half before it is applied to the .up command.

Available as simplebot10.txt

Simplebot still loses out to I_Flamma.

OK then. Let’s try adding a couple more food finding genes and see where that gets us. Add the following two genes to the end of the genome. Don’t forget to put them before the “end” command though.

' Gene 7 wide search 1

cond

*.eye1 *.eye5 >

start

-100 .aimdx store

stop

' Gene 8 wide search 2

cond

*.eye9 *.eye5 >

start

100 .aimdx store

stop

Available as simplebot11.txt

Why do you think we are comparing the outer eyes (1 and 9) with the central eye (5)? It is because we don’t want simplebot rotating when he has a victim in the middle of his sights already. By only turning if .eye1 or .eye9 are bigger than .eye5 we make sure that doesn’t happen

Try it out and see what happens.

Not very good is it? Simplebot eats his own kind again just like he used to in the early days. Why is that?

It is because we added 4 more eye functions without changing the .refeye function to allow for it. We need to go back and change the .refeye functions in gene 3 and gene 6 from 5 to 9.

Available as simplebot12.txt

Either make the changes or load up simplebot12.txt and start the simulation again. If you loaded simplebot12 then make sure that you disabled mutations.

WOW! That made a lot of difference didn’t it. Simplebot12 whooped I_Flamma completely. Amazing! And there is still at least one major flaw in his design. Anyone spotted it yet?

Let him carry on for a few thousand cycles to see what his population reaches while you think about it.

Look carefully at the way he searches for food. Check it by cycling through the console as he approaches a veg. You will often see gene one activate to rotate him a small amount toward his target then gene 7 will also activate to rotate him a lot. The result is that gene 7, which is situated later in the genome than gene 1, place its value into the same .aimdx location that gene 1 already did. Since only one value can exist in .aimdx (or any other memory location) at any one time, the gene 7 value overwrites the smaller gene 1 value. Think about it a bit and you will see that the smaller gene 1 value is the one that needs to be set last. It is far more important to home in on a target near to the center of the field of vision than it is turn towards one in peripheral vision when there is already one near to the center.

We obviously need to cut and paste those two new genes so that we can put them before the first two. Go ahead and do that but first let’s take a look at simplebot12’s population. It is up to about 170 again. Pretty good but we can do better.

Try moving the two genes as described above if you haven’t already. Alternatively just load up simplebot13.txt

Run the simulation again.

Poor old Flamma doesn’t stand a chance does he?

We are still at around 170 robots after 5000 cycles though. This is because all we really changed was simplebot’s hunting efficiency. This means he makes a much better start and is more aggressive than he was but once the robot / veg population ratio reaches an equilibrium point this aggressive behaviour doesn’t help much any more.

We could try fine tuning the rotation rates and maybe change the acceleration rate too but we aren’t going to squeeze much more out of our simplebot with simple coding.

If we want to improve him further then we are going to have to get technical. We will have to use some….

ADVANCED PROGRAMMING!

This is where things start to get fun. We are going to play around with some of simplebot’s personality traits and we are going to teach him how to improve his efficiency at the expense of all around him.

First of all though I want you to think about this question.

What is it that really stops simplebot’s population from growing further?

The answer is simple too. He still expends too much energy, a lot of the time, just to keep living. He is also fraught with inefficiencies.

Where does that energy get spent? All over the place. That’s where.

Every store command that is executed costs 2 energy and every point put into acceleration (.up .dn .dx .sx) costs one point of energy too. Simplebot needs to go on a diet.

Take a look at the way he steers. We now have 4 steering genes placing values into .aimdx. Sometimes they might all activate in the same cycle. In such a case all 4 store commands are executed and each will cost him 2 energy. That’s 8 points of energy in one cycle. On top of that what if he also sees one of his own family out there and stores 180 into .aimdx as well. That make 10 points just to spin on the spot. That sucks.

How do we fix that?

Well first we have to make absolutely sure of the order in which all of our steering commands are placed. We have pretty much done that already but let’s just recap it.

We need to decide the hierarchy of the turning controls then place them with the lowest priority at the start of the genome and higher priorities later in the genome where they will overwrite the earlier ones. The priorities are as follows.

1. Make sure that if simplebot is already facing food then he does not turn at all.

2. Avoid conspecifics. If this is overwritten then simplebot will just chase his family around and waste energy.

3. Turn toward food near to the center of his field of vision.

4. Turn toward food at the outer edges of his field of vision.

Number 1 is new isn’t it. We haven’t directly addressed that one yet except to compare the eye cells with .eye5. That is usually all it takes unless we want to tell simplebot not to turn at all as long as something is in his .eye5 cell. We could easily add a gene to do that but for the moment we won’t.

What we are going to do is to delve deep into the dynamics of the stack so that we can avoid all those store commands.

Do you all remember what the stack is? It is a convenient area that each robot has, where he can place numbers in order to manipulate them at a later time. Normally that time is immediately after placing them. But it doesn’t have to be…. does it?

The stack is a LIFO (Last In First Out) structure that can hold up to 20 values at a given time. Once the stack is full then extra values just fall off to be lost forever. This is known as an “overflow”. It doesn’t cause crashes within DarwinBots because the software has been designed to allow for these occurrences.

All we need to do is figure out how to put values into the stack in such a way as to make sure that the correct one is on top when we need to use it. Think about it. Each of these expensive store commands could be replaced by code that will place a value into the stack, then at the right time we can just use the top value to store into .aimdx. That’s right, we can’t avoid the store command altogether but we can make the genome a whole lot cheaper by just using it once to cover all of the possible rotation commands throughout the whole genome.

But surely if we just keep putting values into the stack then it will fill up before long. That is where we have to get clever. Each time we put a value in, we also have to take one out.

I will show you how to alter gene 7 (now the first gene in the genome) then you can alter all the others yourself.

Change.

' Gene 7 wide search 1

cond

*.eye1 *.eye5 >

start

-100 .aimdx store

stop
into

' Gene 7 wide search 1

cond

*.eye1 *.eye5 >

start

mult -100

stop
Simple isn’t it. The mult operator takes the top two numbers in the stack, multiplies them together then puts the result back onto the stack. Two numbers become one so we have effectively removed the top number. There is no way in the gene code to actually remove a number without doing something with it so this is the best we can do.

If this gene is activated then it leaves –100 as the top number on the stack without costing us a thing in energy.

Go ahead and do the same thing with all the other steering genes and don’t forget the one where simplebot avoids conspecifics.

Finished? OK then. Don’t try simplebot out just yet. He won’t work properly. There isn’t a single .aimdx command left in his genome any more.

We need to add another gene. Place this gene…

‘ gene 9 perform the rotation

cond

start

.aimdx store

stop

..at the end of the genome. It has to be after every one of our modified genes for it to work. Finish off the modifications and start up the simulation again.

Of course you could always just load up simplebot14.txt instead but that would just be lazy wouldn’t it?

I am beginning to feel a little sorry for poor old I_Flamma. He is just getting his butt kicked up and down the screen all the time.

So how is our population doing this time? It got up there around 170-180 pretty quickly but still seems to be rising a little bit. Looks like it topped out around 195. Not bad.

Hey! I just realized that simplebot is way up there on the Formula 2 league table by now. Perhaps we need to move on to the next rung.

Try deleting I_Flamma and putting in I_Venia instead then run the simulation again.

Well that was a bit more of a battle. I_Venia came out on top eventually but simplebot put up a good fight.

Let’s go back and really have a good look at how simplebot behaves. Just watch the program until one of the simplebots locks onto a veg then pause the game, double click the robot and open the console.

Just step the program through a few cycles and watch the gene activations. He keeps reaching 5000 energy and attempting to reproduce. No baby appears but his energy still drops quite a bit. This is very inefficient behavior and need to be sorted out. How though?

Take a good look at gene 5 (the reproduction gene). The only condition to breeding is if the energy is high enough. Simplebot tries to reproduce when he doesn’t have the space to do so.

We can fix this in several ways but first let’s try adding this line to gene 5 conditions.

*.eye5 40 <

Don’t forget that we now have 10 eye cells so you also have to change the .refeye functions too.

Why not just load up simplebot15.txt and save yourself the trouble of changing it all. Go on. I know you want to.

Well that really made a huge difference didn’t it. No more energy wasted and the babies are that much stronger immediately after birth because the parent had more energy to start with. This also makes them better at fighting I_Venia and it’s nasty secret “leach” weapon.

But that’s quite alright Mr. “Infinite Forgiveness” because Simplebot just whipped your butt and moved another rung up the ladder.

That puts him in second place behind Circumversor Algificus if I’m not very much mistaken. The good thing is that I am SOOOOO not out of tricks yet. Up to now all we’ve really done is to streamline everything.

So where do you think the next weak point is in simplebot’s genome? Well I think it is in the reproduction cycle. For 20 cycles the parent and child are tied together and are both unable to hunt efficiently. Why don’t we just mess that up a bit with some clever programming. This is going to be simplebot’s final improvement but it will be a BIG one. It involves some fairly complex concepts.

We are going to start by adding two new genes. Place them anywhere you like.

‘ Gene 10 tie to parent

cond

*.robage 0 =

start

.tie inc

stop

‘ Gene 11 sever tie to parent

cond

*.robage 1 =

start

.delti inc

stop
Note the free energy tie firing and deleting by using inc instead of store to place a value of 1 into both of these commands.

All babies are born facing their parent and attached by a tie with a value of 0. We can’t directly delete this as the tie deletion routine requires a non-zero value in .deltie. We have to find a way around it then. What we do is to make the first act of the new baby (*.robage 0 =) robot, to fire a tie at his parent. This overlays the existing tie and since only one tie can exist between any two robots the zero tie is now gone. The next thing the baby does on the following cycle (*.robage 1 =) is to delete his tie. This concept would be cool on its own but we aren’t going to stop there.

Go back to the reproduction gene and add these two lines to the action step.

mult 628

50 inc
Why? You ask.

Well the first line should be obvious by now. We are making simplebot rotate by a value of 628 (or 180 degrees). Since reproduction, shooting, tie firing and just about everything takes place after rotation on each cycle, this means that simplebot will rotate 180 degrees then pop out a baby.

The 50 inc line is a bit less obvious. What we are doing is setting a reference value that will be used next cycle to turn simplebot back the way he was originally facing and carry right on feeding. We use inc instead of store to save energy.

We also have to go into the condition step of the reproduction gene and take out the line that we added in the last step. You know. The one that only allows simplebot to reproduce when his eye5 cell is almost empty. We have to get rid of this or the whole improvement would be pointless. We want simplebot to reproduce while he is still actively feeding. Go ahead and delete that line now.

The final step is to add a new gene that will make simplebot rotate again when the value in memory location 50 is equal to 1 or more realistically greater than zero just in case it becomes 2 or more. Stranger things have happened.

Add this gene BEFORE the reproduction gene. If you add it after it then the value of memory location cell 50 will be one on the same cycle that simplebot reproduces. We wouldn’t want that would we?

‘ Gene 12 rotate back and continue feeding

cond

*50 0 >

start

mult 628

50 dec

stop
Finally cut and paste gene 6 (avoid conspecifics) in between gene 4 (shoot the food) and your new gene 12.

And don’t forget to change all your .refeye values to 9 again. We deleted an eye cell. Remember?

If this is all getting too much for you then just load up simplebot16.txt and start up the simulation again. Prepare to shout WOW! When you see how simplebot has improved.

Now simplebot really kicks butt. I_Venia is just a smear on the wall now (forgive that! sucker!). Simplebot really isn’t that simple any more is he?

Say hello to 200 plus robots.

The scary thing is that there are still a bunch of minor adjustments that could be made to improve him still further. Try him out against Hunter3.14. We have made simplebot so good that he wins as many duels as he loses. That puts him into the top 4 all time great bots. WOAH!

He actually shares a lot of Hunter’s traits. I think I need to build a new Hunter.

Tie Bots

The next evolutionary step for a DarwinBot has to be improved feeding capabilities. How are we going to improve on Simplebot?

He feeds pretty well and reproduces well too but he still can’t compete with the true top bots like Devincio Eversor (Tie destroyer).

The name of my Devincio series of robots really says it all. Devincio is Latin for tie. All Devincio robots use ties to feed though some are better than others. Simplebot is able to defeat the first tie feeder bots with ease due to its amazingly efficient reproduction system. H_Devincio_Venator (HDV) was the robot that first started the tie feeders on their path to glory. HDV4 is a somewhat modified version of the original HDV and held the top spot until the birth of VEX. VEX was the first tie feeder to utilize the spinning search pattern that Simplebot uses and it gave him enough of an edge to unseat HDV.

What are ties?

That is a good question.

Ties are a feature of DarwinBots that was added in order to enable multiple individual DarwinBots to join up and form a multi cellular organism. A tie represents a defined relationship between two robots and is seen in DarwinBots as a thick line joining the two robots together. The tie keeps the robots in a fixed but flexible orientation to each other but only after a certain number of game cycles have passed. For the first 20 cycles the ties allow for free rotation of both robots.

What do ties do?

Ties are one of the best and most challenging parts of the whole game. The things that ties allow robots to do are amazingly varied and a good proportion of all gene commands relate to ties in some way or other.

When a tie is newly formed and is not yet “hardened”, it may be used for reading information about the tied robot, sending instructions to the tied robot, waste transfer, venom transfer and energy transfer.

Once hardened, the tie can also be set for length and orientation angle with respect to the robot on either end of it. It also enables sharing of waste, shell and slime.

For the time being we are not interested in hardened ties. If we wish to feed from the tie then we need to act fast, not wait 20 cycles before doing anything. The only thing we need to do is to utilize the energy transfer function to drain energy from the robot on the other end of the tie.

How do we make a tie?

Actually creating a tie is quite easy. All you need to do is to store a non zero value in .tie (memory location 330).

In practice though, this isn’t quite so simple. In the following examples I will lead you through the best way to create an efficient tie feeder and point out some of the pitfalls along the way.

Here is Tie bot 1

' Tie-Bot 1

cond

*.eye4 *.eye6 !=

start

*.eye4 *.eye6 sub .aimsx store

stop

cond

*.vel 40 <

start

40 *.vel sub .up store

stop

end

Available as Tie Bot 1.txt

You will notice pretty quickly that he doesn’t actually fire ties yet. Come to that he doesn’t do much of anything really. I have made him this simple to demonstrate an alternative method of using the eye cells to search for food. Notice that all we do is compare the two eye cells either side of *.eye5 (straight ahead), then actually store the resulting difference into .aimsx (rotate left). This method gives an almost infinitely variable rotation value rather than fixed amounts as used in Simplebot. If Tie Bot 1 is much closer to something in *.eye4 than he is to something in *.eye6 then he will turn much more sharply than he would if they were more similar in value. If the two values are the same then he won’t turn at all.

Just run a simulation with Tie Bot 1 to see how well he finds food with only a single search gene. If you want to keep him alive a little longer then just add a shoot gene to the end of his genome. (I have already done this for you in “Tie Bot 2.txt”)

Stays alive pretty good doesn’t he?

There are a couple of things wrong with him still though. I don’t mean the obvious lack of any kind of reproduction gene. I mean in the way he searches for food. Watch closely and you will see a lot of large turns performed while he is close to the food. This is because a slight change in the direction he is heading could result in one of the two eye cells reading upwards of 100 while the other reads nothing. Remember that one eye cell sees an arc of approximately 30 degrees so when very close to another robot, that robot will fill approximately 3 eye cells. That is why Tie Bot doesn’t rotate when *.eye4 and *.eye6 are equal. It is assumed that *.eye5 will also contain an identical value. Remember this fact for later reference. It will be found to be extremely important.

So Tie Bot 1 “wibbles” about a bit when he is close to food. Is that a problem? It actually doesn’t seem to be although you might think it would be. For the moment we will let him carry on that way.

A much larger problem is that he has a very narrow field of vision so he misses food that is just a little bit too far away from where he is facing.

Let’s add another search gene to correct that. This time we will use *.eye2 and *.eye8 to widen the search pattern. You could use any pairing you like or any number of genes with a pair in each but for now we will just use 2 and 8 along with the first gene.

Look back over the lessons you learned from Simplebot and try to figure out where we need to add the new gene. Its positioning will be critical to the operation of Tie Bot 3.

That’s right. It has to go before the other search gene. We can only have one value in .aimsx for each cycle so we need to look at wide angle first then gradually narrow the field of vision so that small turns for close food take precedence over larger turns for outlying food.

Load up “Tie Bot 3.txt” and try it out.

Note that I have also addressed the “wibble” behavior by dividing the value of the eye cell difference by 2 before storing it into .aimsx.

Let’s add a simple reproduction gene and some kind of conspecific avoidance routine then let “Tie Bot 4” run for a while. You will notice that it has become a spinner again. I have also added a condition to the movement gene so that he won’t waste energy on needless acceleration while he is spinning.

Not bad. He reaches 150 robots pretty quickly. We still have that problem with energy wastage while reproducing though. Both robots tend to pull on the tie with an acceleration of about 40 each and in many cases one or both end up dying because of it. We could reduce the acceleration rate or disable movement in young robots but either of those options would make Tie Bot less effective as a hunter and would leave his young extremely vulnerable.

Why not modify “Tie Bot 4” a little to see what would happen if you were to do either of those things. Just play around a little before you come back to see how I plan to fix this.

I will eventually use a similar method to that employed by Simplebot but for the moment I will leave reproduction the way it is. You will see why a little later on.

I guess the next thing to do will be to actually make Tie Bot into a Tie-Bot as the first 4 generation haven’t even tried to use ties yet.

Add the following gene to “Tie Bot 4” or simply load up “Tie Bot 5.txt” then run the simulation again.

Cond

Start

1 .tie store

stop
This is a really stupid gene but demonstrates some of the difficulties associated with tie feeders.

“Tie Bot 5” actually makes a reasonable basis for a simple Multi-Bot (MB) but more on that later.

Notice the way that he ends up collecting 3 vegs and then drags them around the screen while shooting other vegs for food.

Did you notice that I said “shooting”?

That’s right. He isn’t firing ties any more. Well actually he is still firing them but they aren’t becoming attached to anything. That is because a robot can only have 3 ties at any one time so additional ties cannot become attached to him. A possible defense technique against other tie feeders?

Obviously we need to be a little more careful about when and where we shoot ties. We also need a way to feed through the ties once they are attached.

First we need to add a condition or two to the gene that fires the ties.

Change the gene to this. Note that we now have 10 eye cells so you will also need to change the other instances of .refeye to 10 as well.

 cond

*.eye5 30 >

*.refeye 10 !=

start

1 .tie store

stop

In order to feed through the ties we have to set values for .tieloc, .tieval and .tienum.

.tienum is the memory location that tell the program the identification number of the tie through which we want to feed. Since we stored a value of 1 into .tie when we fired our tie, we also need to store 1 into .tienum to address the tie.

.tieloc is the location in the target robot which we wish to address through the tie. In order to exchange energy in either direction we need to use a value of –1 here.

The number stored in .tieval is the quantity of energy that we wish to exchange while we are feeding through the tie. If we want to give energy away we would use a positive number but if we want to take energy then we need a negative value.

When I first discovered this feeding method the amount of energy that could be given away was limited to 100 but there was no limit to the amount that could be taken. This led to many crashes in the program so my later releases (2.12 and later) have a built in limit of 1000 energy points per cycle in either direction.

Now add this gene to Tie Bot and give him a try. This is also available as “Tie Bot 6.txt”

cond

*.numties 0 >

start

-1 .tieloc store

-1000 .tieval store

1 .tienum store

stop

The condition *.numties tells the DNA how many ties are currently attached to the robot. In this instance no attempt is made to feed unless at least one tie is detected.

As you will soon see, Tie Bot 6 doesn’t work very well. There are red ties everywhere. I wonder why?

Watch closely from the console as one of our robots reproduces after swallowing a couple of vegs whole.

Select a robot and step him forward until he reproduces.

The young one appears as normal complete with a reproduction tie. This tie has an identification code of zero so it cannot be directly addressed using .tienum. This is because the program requires a non-zero value in order to process the command.

With the parent robot selected immediately after reproduction, click the button in the console window that looks like an eye. A row of 9 numbers will appear in the output window. These represent the eye cells. You will note that the middle 5 numbers are all 77 (at least they normally are). The young one is so close that he fill 5 eye cells.

*.eye5 is definitely bigger than 30 so one of the conditions needed to fire a tie is satisfied. What about the other condition then? *.refeye needs to be something other than 10.

Click in the input window (the line at the bottom) of the console window and type in…

? .refeye

Make sure that you don’t leave too many spaces and that the period (.) is present.

The console output window should now read

? .refeye

708-> 0

Zero? That is a little strange isn’t it. We know that the young one should have 10 eye cells just like his parent.

The trouble is that the parent doesn’t see the value in the first cycle after birth. The young one doesn’t either. It takes one full cycle before any of the Ref Variables begin to register anything at all, even though the eye cells begin to work immediately. Another bug? Maybe but it is one that we will just have to live with because of the difficulty in fixing it. Believe me. I have tried.

This means that the second condition in the tie-firing gene is also satisfied in both the parent and the young. They both fire ties at each other immediately after birth.

How do we get rid of this tie then? Or should we prevent it from firing in the first place?

Both of these solutions are possible and both have advantages and disadvantages. Deleting a tie is easy enough…. Providing we know the ID code (.tienum value) of the tie. We just store that number into .deltie and all instances of that tie number are deleted from the robot.

Sometimes we don’t know the value though. In the case of Tie Bot 6 it would be simple because all ties have a value of 1 but sometimes it is an advantage to use a random number to address the ties that a robot fires. This number would be stored in a memory location of the robot in the first cycle of its existence using a gene such as

cond

*.robage 0 =

start

50 rnd 55 store

stop
This gene randomizes a number from zero to 50 and stores it into memory location 55 for later reference. The value can be used later to create and address ties as many times as necessary throughout the robots lifetime. There are many advantages to such a system. Let’s add this to Tie Bot right now then come back to the problem above.

OK then. Where were we before we got side tracked?

Trying to figure out how to stop the tie being fired when the new robot has just been born.

We can easily stop the young one from firing it. All we would have to do is to add a condition to the tie-firing gene which would prevent a robot of age 0 from firing a tie at all. Stopping the parent from shooting a tie is a little more complex though. We cannot use *.robage this time.

A better option would be to add a condition that would prevent either robot from firing while one of the Ref Variable is equal to zero. Since they are all zero during the first cycle of the young one’s life, we could just as easily use any one. Let’s take a look at the options that we could add.

*.refeye 0 !=
Would this work in addition to the other conditions in the tie-firing gene?

No not really. It would certainly stop the problem of ties being shot in the first cycle after birth but it would also prevent ties being fired at vegs since they have no eye cells. The same thing would be true of almost all the Ref Variables… except for one.

*.refeaimdx 0 !=

Vegs have one .aimdx command so this would work to allow shots at them still. Trouble is that Tie Bot has no .aimdx commands at all. Do you think this would be a problem?

Actually it wouldn’t since we won’t be allowing any ties to be fired at any robot that has no .aimdx commands anyway. It would be a problem if we were facing another robot that uses no .aimdx commands though wouldn’t it?

This is a real problem.

Hey here is a thought. Those eye cells are always equal to 77 when a new robot is born so we could add this line.

*.eye5 77 !=

That should work OK. It will prevent ties being fired during that critical first cycle and won’t really cause any problems elsewhere. Let’s give it a try. Load up “Tie Bot 7.txt” and run the sim.

Note that all of the *.refeye functions now use 11 rather than 10. Also the addition of an initialize gene to put a random value into memory location 55 to be used as the ID number for ties.

Sorted!! No more robots fixed together by red ties. Now the feeding takes place only when and where we want it to.

“Tie Bot 7” reached over 350 units in 1000 cycles when I tested it just now. It also beats Simplebot 16 pretty easily.

We still get the occasional two robots joined together by red ties but they are few and far between now. Another problem is in the way that Tie Bot breeds. We get large chains of young ones all fixed together so they are les effective than robots such as Devincio Eversor (also included in the tutorial directory). Try running Tie Bot 7 against Devincio Eversor and watch the differences in the way they reproduce. We need to make Tie Bot reproduce that way. Fortunately it is reasonably easy to do this. In fact it can be done in several ways.

The easiest way is to add this line to the “Initialize” gene…

1 .tie store

and then to add an entirely new gene to follow it..

cond

*.robage 1 =

start

1 .deltie store

stop
This combination forces the newly born robot to tie to its parent with a number 1 tie, then in the following cycle, to delete it again. This is a similar method to that used in Simplebot. This version of Tie Bot can be found as “Tie Bot 8.txt” in the tutorial directory.

Tie Bot 8 still isn’t perfect though. Sometimes we still get a couple of them tied together and attempting to feed from each other. The only way this can actually happen though is if both the robots are using the same .tienum value and the chances of that are 50:1 against. If the numbers (tie phase) are different then one or the other of the two robots will successfully feed from the other. We won’t see this very often as the loser in such a conflict will die very quickly. The fact that we do see a few robots fixed together by red ties is an indicator that there must be something wrong with the tie targeting routine. They must be hitting each other by accident.

We can stop this either by making the targeting routine more accurate or by deleting the tie if it is attached to a friend. Lets try both.

First we can improve targeting by making sure that we are facing the target directly when we fire the tie. As we know, when a robot gets extremely close to a target, it sees it in up to 5 of its eyes. The present targeting routine only requires *.eye5 to be greater than 30 so Tie Bot doesn’t really need to facing directly towards the target in order for him to fire his tie. How can we improve this I wonder?

The best way is to make sure that the central 3 eyes are all seeing the same thing at the same distance. If this is the case then the chances are that Tie Bot is facing directly toward the target. Lets try adding the following line to the conditions of the tie-firing gene.

*.eye4 *.eye6 =

While we are at it lets also add an extra condition to the reproduction gene so that we don’t waste energy trying to reproduce when there isn’t sufficient room. Try adding this line to the conditions of the reproduction gene.

*.eye5 30 <

That should give us enough room to reproduce. Don’t forget to change all of the .refeye conditions.. Again.. There are 14 of them now.

I am getting a little fed up with doing that every time we change something. Lets fix that once and for all. First we will add the following line to the “Initialize” gene..

14 56 store

Then we will go through the whole genome and replace all of the .refeye condition numbers with *56. That way we will only have to change one value from now on when we add any eye cells. You can find this version of Tie Bot as “Tie Bot 9.txt” in the tutorial directory.

Well Tie Bot 9 seems to work pretty good but it still does the same thing as before. We need to delete those ties I think.

OK then. Let’s start by adding this line to the tie-firing gene..

*55 .readtie store

This will allow us to read the tref variables from the robot that we are tied to. We only need to use this line once since the value is never reset until we set it ourself. We will now be able to read values through the tie that corresponds to the value in *55.

Next we will add a new gene..

Cond

*.trefeye *56 =

start

*55 .deltie store

stop

This gene checks to see how many eye cells the robot that we are currently tied to, has. If that value equals its own then the robot will delete the tie. Load up “Tie Bot 10.txt” and give it a run.

Now they don’t eat each other any more. It worked! The overall efficiency has also improved. The population reaches around 370 now.

Let’s try a contest against Devincio Eversor to see just how good Tie Bot is getting now.

Not that good really. Eversor easily wins still. But then again, Eversor has something that Tie Bot doesn’t.. Slime..

Slime is one of the newer features that protects a robot from being hit by a tie. If you can’t fix a tie to your target, you can’t feed from it. Maybe we should add a slime gene to Tie Bot and try again. Let’s try this one..

cond

*.slime 90 <

start

100 .mkslime store

stop

You will find the new version as Tie Bot 11.txt

Let’s try again.

This time it is a bit of a different story. Tie Bot 11 wins 4 out of 5 battles.

Slime actually reduces the overall efficiency but gives a tie feeder a much better fighting chance when facing others of similar persuasion. We fan now only reach a population of around 320.

As before with simplebot, there are still a number of things that we could do to make Tie Bot even stronger. I will leave you to figure out what they are. A robot that can beat Devincio Eversor is quite good enough for a tutorial.

There are many ways to create a tie-feeding robot as good as Tie Bot 11 This tutorial follows but a single path that was chosen for its differences from the methods used in Simplebot. As you can see from this tutorial, the possibilities are almost endless.

I expect to see a whole bunch of new and stronger robots out there in the F1 league soon.

In the next part of this tutorial we will begin to delve into the complexities of creating stable Multi-Bots. If you think that the lessons you have learned this far have been complex then you are sadly mistaken. In order to make a Multi-Bot work properly we will need to learn a whole new set of rules.

Happy coding

Purple Youko

APPENDIX 1

Memory position
Variable name

Other information

1

up

Command

2

dn

Command

3

sx

Command

4

dx

Command

5

aimdx

Command

6

aimsx

Command

7

shoot

Command

8

shootval

Command

9

robage

new Function

501

eye1

Function. Always renewed

502

eye2

Function. Always renewed

503

eye3

Function. Always renewed

504

eye4

Function. Always renewed

505

eye5

Function. Always renewed

506

eye6

Function. Always renewed

507

eye7

Function. Always renewed

508

eye8

Function. Always renewed

509

eye9

Function. Always renewed

200

vel

Function slightly modified. Always renewed

203

pain

Function. Always renewed

204

pleas

Function. Always renewed

205

hitup

Function. Always renewed

206

hitdn

Function. Always renewed

207

hitdx

Function. Always renewed

208

hitsx

Function. Always renewed

210

shup

Function. Always renewed

211

shdn

Function. Always renewed

212

shdx

Function. Always renewed

213

shsx

Function. Always renewed

214

edge

New Function. Always renewed

310

nrg

Function. Always renewed

300

repro

Command

301

mrepro

Command

302

sexrepro

New command

330

tie

Command

701

refup

Function. Conditionally renewed

702

refdn

Function. Conditionally renewed

703

refsx

Function. Conditionally renewed

704

refdx

Function. Conditionally renewed

705

refaimdx

Function. Conditionally renewed

706

refaimsx

Function. Conditionally renewed

707

refshoot

Function. Conditionally renewed

708

refeye

Function. Conditionally renewed

709

refnrg

Function. Conditionally renewed

710

refage

New Function. Conditionally renewed

800

out1

Function. Conditionally renewed

801

out2

Function. Conditionally renewed

810

in1

Memory storage location

811

in2

Memory storage location

820

mkslime

New Command

821

slime

New Function. Always renewed

822

mkshell

new Command

823

shell

New Function. Always renewed

824

strvenom

New Command

825

venom

New Function. Always renewed

826

strpoison

New Command

827

poison

New Function. Always renewed

828

waste

New Function. Always renewed

829

pwaste

New Function. Always renewed

830

sharenrg

New Command

831

sharewaste

New Command

832

shareshell

New Command

833

shareslime

New Command

400

sun

Function. Always renewed

450

tieang

Command

451

tielen

Command

452

tieloc

Command

453

tieval

Command

454

tiepres

Function. Always renewed

455

tienum

Command

456

trefup

New Function. Conditionally renewed

457

trefdn

New Function. Conditionally renewed

458

trefsx

New Function. Conditionally renewed

459

trefdx

New Function. Conditionally renewed

460

trefaimdx

New Function. Conditionally renewed

461

trefaimsx

New Function. Conditionally renewed

462

trefshoot

New Function. Conditionally renewed

463

trefeye

New Function. Conditionally renewed

464

refnrg

New Function. Conditionally renewed

465

trefage

New Function. Conditionally renewed

466

numties

New Function. Always renewed

467

deltie

New Command

468

fixang

New Command

469

fixlen

New Command

470

multi

New Function. Always renewed

471

readtie

New Command

